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ABSTRACT 

The concept of connectivity and cycle connectivity play an important role in fuzzy graph theory. 

In this paper cyclic cut vertices, cyclic bridges and cyclically balanced fuzzy graphs are 

discussed. A cyclic vertex connectivity and cyclic edge connectivity of fuzzy graphs are also 

discussed. Connectivity of a complement fuzzy graph is analyzed.  
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Connectivity, Cyclic Edge Connectivity. 
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1 INTRODUCTION TO FUZZY GRAPH 

Graph theory is proved to be tremendously useful in modeling the essential features of systems 

with finite components. Graphical models are used to represent telephone network, railway 

network, communication problems, traffic network etc. Graph theoretic models can sometimes 

provide a useful structure upon which analytic techniques can be used. A graph is also used to 

model a relationship between a given set of objects. Each object is represented by a vertex and 

the relationship between them is represented by an edge if the relationship is unordered and by 

means of a directed edge if the objects have an ordered relation between them. Relationship 

among the objects need not always be precisely defined criteria; when we think of an imprecise 

concept, the fuzziness arises. 

 

In 1965, L.A. Zadeh  introduced a mathematical frame work to explain the concept of 

uncertainty in real life through the publication of a seminar paper. A fuzzy set is defined 

mathematically by assigning to each possible individual in the universe of discourse a value, 

representing its grade of membership, which corresponds to the degree, to which that individual 

is similar or compatible with the concept represented by the fuzzy set. The fuzzy graph 

introduced by A. Rosenfeld  using fuzzy relation, represents the relationship between the objects 

by precisely indicating the level of the relationship between the objects of the given set. Also he 

coined many fuzzy analogous graph theoretic concepts like bridge, cut vertex and tree. Fuzzy 

graphs have many more applications in modeling real time systems where the level of 

information inherent in the system varies with different levels of precision. 

 

2  BASIC DEFINITIONS OF FUZZY GRAPH 

Definition 2.1 

 A fuzzy graph G is defined as an ordered pair G=(V,E) where V is set of  vertices. A 

vertex is also called a node or element  and E is a set of edges. An edge is an element of the 

fuzzy set ]1,0[: YXE . 

Definition 2.2 

A fuzzy subset of a non-empty set S is a mapping   : S → [0,1] which assigns to each element 

„x‟ in S a degree of membership, 0 ≤ (x) ≤1. 
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Definition 2.3 

A fuzzy relation on S is a fuzzy subset of S × S. A fuzzy relation µ on S is a fuzzy relation on the 

fuzzy subset   if µ(x, y) ≤ (x)   (y) for all x, y in S where   stands for minimum. A fuzzy 

relation on the fuzzy subset   is reflexive if µ(x, x) =  (x) for all x S. A fuzzy relation μ on 

S is said to be symmetric if µ (x, y) = µ (y, x) for all x, y S. 

 * = supp ( ) = {uS /  (u) > 0}. µ *= supp (µ) = {(u, v)  S × S / µ (u, v) > 0}. 

 

Definition 2.4 

A fuzzy graph is a pair G= ( ,µ) where   is a fuzzy subset of S, µ is a symmetric fuzzy 

relation on  . The elements of S are called the nodes or vertices of G and the pair of vertices as 

edges in G. The underlying crisp graph of the fuzzy graph G= ( ,µ) is denoted as G* : (S, E)  

where  E S × S. The crisp graph (S, E) is a special case of the fuzzy graph G with each vertex 

and edge of (S, E) having degree of membership 1. 

 

Definition 2.5 

(  , )  is a fuzzy sub graph or a partial fuzzy sub graph of ( ,µ)  if    and   ; that 

is if )()( uu    for every u S and )()( ee    for every e E. 

 

Definition 2.6 

(  , )   is a fuzzy spanning sub graph of ( ,µ) if  ' =  and   ; that is if  '(u) =  (u) 

for every for every u S and )()( ee    for every e E.  

 

Definition 2.7 

For any fuzzy subset   of S such that   , the fuzzy sub graph of ( , μ) induced by n  is the 

maximal fuzzy sub graph of ( ,µ), that has fuzzy vertex set  and it is the fuzzy sub graph 

),(    where   (u, v) =  (u)   (v)  (u, v) for all u, v in S. 

 

Definition 2.8                                                                  

Given a fuzzy graph G= ( ,μ), with the underlying set S, the order of G is defined and denoted 

as  



sx

xp )(  and size of G is defined and denoted as 



syx

yxq
,

),( . 
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Definition 2.9 

 Let G = ( ,μ) be a fuzzy graph. The degree of a vertex „u‟ is defined as 







sv
uv

vuud ),()(   . It is also denoted as dG(u). A fuzzy graph is said to be regular if every vertex 

is of same degree. 

 

Definition 2.10 

An edge (x, y) in  * is an effective edge if  (x, y) = (x)   (y). A fuzzy graph G is said to 

be a strong fuzzy graph if  (x, y) = (x)   (y) for all (x, y) in  *. 

 

Definition 2.11 

A fuzzy graph G is said to be a complete fuzzy graph if  (x, y) is  (x)   (y) for all x, y in 

 *. 

 

Definition 2.12 

If  (x, y) > 0 then x and y are called neighbours, x and y are said to lie on the edge e = (x, y). A 

path ρ in a fuzzy graph G = ( ,μ) is a sequence of distinct nodes v0, v1, v2, …, vn such that      

 (vi-1, vi) > 0, 1≤i≤n. Here „n‟ is called the length of the path. The consecutive pairs (vi-1, vi) are 

called arcs of the path. 

 

Definition 2.13 

If u, v are nodes in G and if they are connected by means of a path then the strength of that path 

is defined as ),( 1
1

ii

n

i
vv 


   i.e., it is the strength of the weakest arc. If u, v are connected by means 

of paths of length „k‟ then 
k
(u, v) is defined as 

k
(u, v) = sup{  (u, v1)   (v1, v2)         

(v2, v3) …   (vk-1, v) / u, v1, v2, …, vk-1, v S}. If u, vS the strength of connectedness 

between u and v is, 
∞
(u, v) = sup{ 

k
 (u, v) / k = 1, 2, 3, …}. 
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Definition 2.14 

A fuzzy graph G is connected if 
∞
(u, v) > 0 for all u, v *. An arc (x, y) is said to be a 

strong arc if   (x, y) ≥ 
∞
(x, y). A node x, is said to be an isolated node if  (x, y) = 0  y ≠x. 

 

Definition 2.15 

G = ( ,μ) is a fuzzy cycle iff ( *,μ *) is a cycle and there does not exist a unique (x, y)   μ* 

such that μ(x, y) =  { μ(u, v) / (u, v)  μ*}. 

 

Definition 2.16 

Let G = ( ,μ) be a fuzzy graph. The complement of G is defined as G
c
 = ( c

, μ
c
 ) where  μ

c
 (x, 

y) =  (x)   (y) - μ(x, y)  x, yS.  

 

Definition 2.17 

The μ -complement of G is denoted as G
μ
 = ( μ

, μ
μ
) where  μ

 =  and μ
μ
 (u, v) = 0 if         μ(u, 

v) = 0 and μ
μ
 (u, v) =  (u)   (v) - μ(u, v) if μ(u, v) > 0. 

 

Definition 2.18 

The busy value of a node „v‟ in G is D(v) =  
i

) (v  (v) i  where vi are the neighbours of v 

and the busy value of G is D(G) = 
i

D ) (vi
 where vi are the nodes of G. 

Definition 2.19 

A node in G is a busy node if  (v)≤d(v), otherwise it is called a free node. 

 

Definition 2.20 

A node v of a fuzzy graph G is said to be  

i. A  partial free node if it is a free node in both G and G
μ
. 

ii. Fully free node if it is free in G but busy in G
μ
. 

iii. Partial busy node if it is a busy node in both G and G
μ
. 

iv. Fully busy node if it is busy in G but free in G
μ
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Definition 2.21 

Two nodes of a fuzzy graph are said to be fuzzy independent if there is no strong arc between 

them. 

 

Definition 2.22 

A subset S' of S is said to be fuzzy independent if any two nodes of S' are fuzzy independent. 

 

Definition 2.23 

A fuzzy graph G is said to be fuzzy bipartite if the node set S can be partitioned into two subsets 

S1, S2 such that S1 and S2 are fuzzy independent sets. These sets are called fuzzy bipartition of S. 

 

Definition 2.24 

A fuzzy matrix is the matrix whose elements are taking their values from [0, 1]. 

 

Definition 2.25 

A fuzzy graph that has no cycles is called a cyclic or a forest. A connected forest is called a  

fuzzy tree. It is also denoted as f-tree. 

 

Definition 2.26 

A cyclic vertex cut of a fuzzy graph G=( , μ) is a set of vertices *X  such that CC(G-

X)<CC(G) provided CC(G)>0 where CC(G) is the cycle connectivity of G. 

 

Definition 2.27 

Let X be a cyclic vertex cut of G. The strong weight of X is defined as 



Xx

c yxXS ),()(   

where ),( yx is the minimum of weights of strong edges incident on X. 

 

Definition 2.28 

Cyclic vertex connectivity of a fuzzy graph G, denoted by kc(G), is the minimum if the cyclic 

strong weights of cyclic vertex cuts in G. 
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Definition 2.29 

A cyclic edge cut of a fuzzy graph G=( , μ) is a set of edges *Y  such that CC(G-

Y)<CC(G), provided CC(G)>0, where CC(G) is the cyclic connectivity in G. 

 

Definition 2.30 

Let G=( , μ) be a fuzzy graph. The strong weight of a cyclic edge cut Y of G is defined as 





*

' )()(



ie

ic eYS , where ei is a strong edge of Y. 

Definition 2.31 

Cyclic edge connectivity of a fuzzy graph G denoted by )(' Gkc is the minimum of the strong 

weights of cyclic edge cuts in G. 

 

Definition 2.32 

A fuzzy graph is cyclically balanced if it has no cyclic fuzzy cutvertices and cyclic fuzzy 

cutbridges. 

 

3.CONNECTIVITY IN A FUZZY GRAPH 

3.1 CYCLE CONNECTIVITY IN FUZZY GRAPHS 

Theorem 3.1.1 

 A fuzzy graph G is a fuzzy tree if and only if CC(G) = 0. 

Proof 

 If G is an f-tree, then CGu,v = 0 for every pair of nodes u and v in G. Hence it follows that 

CC(G) = 0. 

Conversely suppose that CC(G) = 0. Hence CGu,v = 0 for every pair of nodes in G. That is G has 

no strong cycles. Hence G has no fuzzy cycles and hence it follows that G is an f-tree. 

Proposition 3.1.2 

 The cycle connectivity of a fuzzy cycle G is the strength of G. 

Proof  

 Proof follows from the fact that any fuzzy cycle is a strong cycle. 

Theorem 3.1.3 
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Let G be a complete fuzzy graph with nodes v1, v2, ...., vn such that ii tv )(   and t1 ≤ t2 ≤  ......≤  

tn-2 ≤  tn-1 ≤  tn. Then CC(G) = tn−2. 

 

Proof 

Assume the conditions of the Theorem. Since any three nodes of G are adjacent, any three nodes 

are in a 3-cycle. Also all arcs in a complete fuzzy graph are strong . Thus to find the maximum 

strength of cycles in G, it is sufficient to find the maximum strength of all 3-cycles in G. For 

consider a 4-cycle C = abcda in G (case of n-cycle is similar). Since G is complete, there exists 

parts of two 3-cycles in C, namely C1 = abca and C2 = acda. Let the strength s(C) = t. For all 

edges (x, y) in C, μ(x, y) ≥ t. In particular μ(a, b) ≥ t and μ(b, c) ≥  t. Since G is a complete fuzzy 

graph,  G has no  arcs. Thus μ(a, c) ≥ Min{μ(a, b),μ(b, c)}≥t. That is μ(a, c) ≥ t. Suppose μ(a, c) 

= t, then s(C1) = s(C2) = s(C) = t. 

 

Suppose μ(a, c) > t, then since s(C) = t, atleast one of C1 or C2 will have strength equal to t. 

In either case, s(C) = Min{s(C1), s(C2)} Thus the strength of a 4-cycle is nothing but the strength 

of a 3-cycle in G. Among all 3-cycles, the 3-cycle formed by three nodes with maximum node 

strength will have the maximum strength. Thus the cycle C = vn−2vn−1vnvn−2 is a cycle with 

maximum strength in G. Also Strength of C = tn−2^ tn−1^tn = tn−2 where ^ stands for the minimum. 

Thus CC(G) = tn−2. 

 

Proposition 3.1.4 

In a fuzzy graph, if arc (u, v) is a cyclic bridge, then both u and v are cyclic cutnodes. 

Proof 

 Let G( , μ) be a fuzzy graph and (u, v) be a cyclic bridge in G. Then CC(G − (u, v)) < CC(G). 

Hence CC(G − u) ≤ CC(G − (u, v) < CC(G) and CC(G − v) ≤ CC(G − (u, v) < CC(G). Thus u 

and v are cyclic cutnodes. 

 

Proposition 3.1.5 

Let G be a fuzzy graph such that G* is a cycle. Then, 

(a) G has no cyclic cutnodes or cyclic bridges if G is a fuzzy tree. 

(b) All arcs in G are cyclic bridges and all nodes in G are cyclic cutnodes if G is a strong cycle. 
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Proof 

(a) Follows from the fact that a fuzzy tree has no strong cycles. 

(b) If G is a strong cycle, then CC(G) = strength of G. The removal of any arc or node will 

reduce its cycle connectivity 0. 

 

Theorem 3.1.6 

 Let G = ( , μ) be a complete fuzzy graph with | *| ≥ 4. Let v1, v2, ..., vn  * and   (vi) = ci 

for i = 1, 2, ..., n and c1 ≤ c2≤ ... ≤ cn. Then G has a cyclic cutnode (or cyclic bridge) if and only if 

cn−3 < cn−2. Further there exists three cyclic cutnodes ( or cyclic bridges) in a complete fuzzy 

graph  (if exists). 

Proof 

Let v1, v2, ..., vn  * and    (vi) = ci for i = 1, 2, ..., n and c1 ≤ c2≤ ... ≤ cn. Suppose that G has a 

cyclic cutnode u(say). Then CC(G − u) < CC(G). That is u belongs to a unique cycle C with   = 

strength of C > strength of C′ for any other cycle C′ in G. Since c1 ≤ c2≤ ... ≤ cn, it follows that 

the strength of the cycle vn−2v n−1v n  is  . Hence u  {v n−2, v n−1, v n}...(1). 

To prove c n−3 < c n−2. Suppose not. That is c n−3 = c n−2.  

 

Then C1 = v nv n−1v n−2 and C2 = v nv n−1v n−3 have the same strength and hence the removal of vn−2, 

vn−1 or vn will not reduce CC(G) which is a contradiction to (1). Hence cn−3 < cn−2. 

 

Conversely suppose that cn−3 < cn−2. To prove G has a cyclic cutnode. Since cn  ≥ cn−1  ≥ cn−2 and 

cn−2 > cn−3, all cycles of G have strength less than that of strength of v nv n−1v n−2. Hence the 

deletion of v n,v n−1 or v n−2 will reduce the cycle connectivity of G. Hence v n,v n−1 and v n−2 are 

cyclic cutnodes of G. 

 

Theorem 3.1.7 

For a complete fuzzy graph G, kc(G)≤k(G). 

Proof 

Given a complete fuzzy graph G with vertices v1, v2, ..., vn such that ds(v1) ≤ ds(v2) ≤…≤ ds(vn).  

Let v1 be a vertex such that ds(v1)= ).(Gs  

Case I If v1 is a cyclic cutvertex. 
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Here, V={v1} is a cyclic cut set of G. Therefore,  

)},(min{)( 1 ic vvVS   for i={2,….n} 

           

)(

),( 1

G

vv

s

i

i








 

Now, since kc(G)=min{Sc(V)}, where V is a cyclic cutest of G. we have 

)()()()( GkGVSGk scc    

Case II If v1 is not a cyclic cutvertex. 

 Let F={ u1, u2,….ut} be a cyclic cut set such that Sc(F)= kc(G). Now 

kc(G)= Sc(F) 

     

)(

)(

)(

)},(min{

,...2,1,*,)},,(min{

1

1

1

Gk

G

vd

uu

njijforuuuu

s

s

t

i

ji

t

i

jiji

























Corollary 3.1.8 

A vertex in a fuzzy graph is cyclic cutvertex if and only if it is a common vertex of all strong 

cycles with maximum strength. 

 

Proof 

Let G be a fuzzy graph. Let w be a cyclic cutvertex of G. Then CC(G-w)<CC(G), i.e., 

Max{S(C), where C is a strong cycle in G-w}<Max {s(C′), where C′ is a strong cycle in G}. 

Therefore all strong cycles in G with maximum strength is removed by the deletion of w. Hence 

w is common vertex of all strong cycles with maximum strength. Hence it will results in the 

reduction of cycle connectivity of G. Thus w is a cyclic cutvertex of G. 

 

Theorem 3.1.9 

Let G = ( , μ) be a  fuzzy graph. Then no cyclic cutvertex is a fuzzy endvertex of G..  
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Proof 

Let G = ( , μ) be a  fuzzy graph. Let w be a cyclic cutvertex of G. Then w lies on a strong cycle 

with maximum strength in G. Clearly w has atleast two strong neighbors in G. Hence w cannot 

be a fuzzy endvertex of G. 

 

Conversely, if w is a fuzzy endvertex of G with |Ns(w)| =1, where Ns(w) be the neighboring set 

of w, then w cannot lie on a strong cycle in G. Implies w is not a cyclic cutvertex of fuzzy graph 

G. 

 

Theorem 3.1.10 

Let G = ( , μ) be a complete fuzzy graph with | *| ≥ 4. Suppose v1, v2, ..., vn  * and    (vi) 

= ci for i = 1, 2, ..., n and c1 ≤ c2≤ ... ≤ cn. Then  G is cyclically balanced if and only if    cn-3= cn-2. 

 

Proof 

Let v1, v2, ..., vn  * and    (vi) = ci for i = 1, 2, ..., n and c1 ≤ c2≤ ... ≤ cn.If possible, suppose 

that G is cyclically balanced. To prove that cn-3= cn-2 . Suppose not, that is cn-3< cn-2. Since cn-2 ≤ 

cn-1 ≤ cn and cn-3< cn-2, all cycles of G have strength less than that of strength vn vn-1 vn-2 vn. Hence 

the deletion of any of the three vertices vn ,vn-1 or vn-2 reduces the cycle connectivity of G. Hence 

vn ,vn-1 and vn-2 are cyclic cutvertices of G, which is a contradiction to the fact that G is cyclically 

balanced. 

 

Conversely, suppose that  cn-3= cn-2 .Then C1= vnvn-1vn-2vn and  C2= vnvn-1vn-3vn  have the same 

strength and hence the removal of vn ,vn-1 or vn-2 will not reduce the cyclic connectivity of G. 

That is , there does not exist any cyclic fuzzy cutvertex in G. 

 

Hence the fuzzy graph G = ( , μ) is cyclically balanced. 

 Theorem 3.1.11  

Let G be a complete fuzzy graph. G is cyclically balanced if there exist a K4 as a sub graph of G, 

in which every cycle is of equal maximum strength. 

 

 



ISSN: 2320-0294 Impact Factor: 6.765 

 

12 International Journal of Engineering, Science and Mathematics 

http://www.ijmra.us, Email: editorijmie@gmail.com 
 

Proof 

Let G be a complete fuzzy graph with | *| ≥ 4. Let v1, v2, ..., vn  * and    (vi) = ci for i = 1, 

2, ..., n and c1 ≤ c2≤ ... ≤ cn. Let K4  be a fuzzy sub graph of G with vertex set      

{vn-3,vn-2,vn-1,vn} such that cn-3 ≤ cn-2 ≤ cn-1 ≤ cn. Suppose all the strong cycles in K4 are of equal 

maximum strength. This happens only when cn-3 = cn-2. Then by theorem 3.1.10  is cyclically 

balanced. 

 

Theorem 3.1.12 

Let G = ( , μ) be a complete fuzzy graph and v * such that )()( Gvd ss  . If v lies on a 

strong cycle C, then S(C)=CC(G). 

 

Proof 

Let G = ( , μ) be a complete fuzzy graph and v * such that )()( Gvd ss  . 

 Let v1, v2, ..., vn  * and    (vi) = ci for i = 1, 2, ..., n and c1 ≤ c2≤ ... ≤ cn. Since cn-2 ≤ 

cn-1 ≤ cn and cn-3 < cn-2 , all cycles of G have strength less than that of the strength of vn vn-1 vn-2 

vn. First to prove that for vi, i=1,2,….,n-2. ).()( nsis vdvd   

).(

1,...2,1,

2,...2,1,)(...

),min()(

21

,1

ns

i

i

n

ijj

jiis

vd

nic

nicincc

ccvd














 

Also  

)(

)(

)()(

)()()(

1

1

1

2

1

11

2

1

1

G

c

vd

cccc

ccccvd

s

n

i

i

ns

n

i

innn

n

i

innnns



































 

Therefore, nv  belongs to the strong cycle ,21 nnnn cccc  where strength of this cycle is equal to the 

cycle connectivity of graph G. 
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Theorem 3.1.13 

For a complete fuzzy graph, ).()()( ' GGkGk scc 
 

 

Proof 

Consider all cycles, with strength equal to cycle connectivity of ),( G .  

Let X={e1,e2,…en}, where ei=(ui,vi) be one of the edges in each such cycles. Then X from a 

cyclic fuzzy edge cut of G. Let Sc(X) be the cyclic strong weight of X. Then, according to the 

definition of cyclic fuzzy edge connectivity,  

).()(' XSGk cc   

 Let Y={v1,v2,….,vn} where vi is of one of the end vertices of ei. Then Y forms a cyclic 

fuzzy vertex cut of G. Let Sc(Y) is the cyclic strong weight of Y. Then 

)().( ' GkYS cc   

Hence 

).()( YSGk cc   

From the above equation 

)(

)(

)()(

'

G

Gk

YSGk

s

c

cc







 

By theorem 3.1.7 

Hence, ).()()( ' GGkGk scc 
 

 

Theorem 3.1.14 

A fuzzy graph G = ( , μ) with 6*  is cyclically balanced if there exist two disjoint cycles 

C1 and C2 such that S(C1)=S(C2)=CC(G). 

 

Proof 

Let G = ( , μ) be a fuzzy graph with 6*   and cycle connectivity of G is equal to CC(G). 

Let C1 and C2 two disjoint cycles in G such that S(C1)=S(C2)=CC(G).  
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Suppose u is a vertex not in )( 21 CCV  . Then the deletion of u will not effect the cycle 

connectivity  of G-{u}. If the vertex )( 1CVu and if u is deleted, then the cycle connectivity 

remains the same, since there exist another cycle C2 with strength of C2 equal to the cycle 

connectivity of the fuzzy graph. Similarly if )( 2CVu , u is not a cyclic cutvertex. 

Suppose Evu ),(  but )(),( 21 CCEvu  , clearly (u,v) will not reduce the cycle connectivity 

of the fuzzy graph. If (u,v) is an edge either on C1 or on C2, then the removal of (u,v) from any 

one of these cycles will not effect the cycle connectivity of G. Hence (u,v) is not a cyclic fuzzy 

bridge. 

 

Theorem 3.1.15 

For 4*  , There is a connected cyclically balanced fuzzy graph. 

 

Proof 

For 4*  and 5, have cyclically balanced fuzzy graphs from the definition 2.2.32. For 

6*   prove the result by induction. For ,6*   let v1,v2,…,v6 be the 6 vertices. Construct 

two edge disjoint cycles C1=v1v2v3v1 and C2=v4v5v6v4 with maximum strength. 

 

Join each pair of vertices from the two cycles and make the graph complete. Then the removal of 

an edge or a vertex will not reduce the cycle connectivity of G. So the newly obtained fuzzy 

graph is cyclically balanced. 

 

Assume that the result is true for .* k  let Gk be a cyclically balanced fuzzy graph with k 

vertices. Then there exist two disjoint cycles of maximum strength in Gk. 

 

Let Gk+1 be the fuzzy graph obtained from Gk by adding one more vertex u. Make the fuzzy 

graph complete by connecting all vertices of Gk with u. Also assign a membership value to all 

newly joined edges, which less than or equal to the cycle connectivity of Gk. 
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In this case, if we remove the vertex u, then the cycle connectivity of Gk remains the same. In a 

similar way, the removal of any edge incident on k+1
th

 vertex u will not change the cycle 

connectivity of G. Therefore cycle connectivity of Gk+1 remains the same. Hence Gk+1 is 

cyclically balanced.  

 

3.2 CONNECTIVITY IN cG  

Preposition 3.2.1 

Let ),( G   be connected fuzzy graph with no m-strong arcs then cG  is connected. 

 

Proof 

The fuzzy graph G is connected and contain no m-strong arcs. Suppose u ,v be two arbitrary 

nodes of cG . Then they are also nodes of G. Since G is connected there exist a path between u 

and v in G. Let this path be P. Then ),)...(,)(,( 12110 nn uuuuuuP   where .0),( 1 iuu ii   

Since G contain no m-strong arcs, .0),( 1 iuu ii

c   

Hence P will be a (u,v) path in cG  also. Therefore cG  is connected. 

 

Theorem 3.2.2 

 Let ),( G  be a fuzzy graph. G and cG  are connected if and only if G contains at least one 

connected spanning fuzzy subgraph with no m-strong arcs. 

 

Proof 

Suppose that G contains a spanning subgraph H that is connected, having no m-strong arcs. 

Since H contain no m-strong arcs and is connected using proposition-3.2.1, cH  will be a 

connected spanning fuzzy subgraph of cG  and thus cG  is also connected. 

Conversely assume that G and cG  are connected. Have to find a connected spanning subgraph of 

G that contain no m-strong arcs. 

 

Let H be an arbitrary connected spanning subgraph of G. If H contain no m-strong arcs then H is 

the required subgraph. Suppose H contain one m-strong arc say (u,v). Then arc (u,v) will not be 
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present in cG . Since cG is connected there will exist a u-v path in cG . Let this path be 
1P . Let 

),)...(,)(,( 132211 nn uuuuuuP  , where uu 1
  and vun  . 

 

If all the arcs of 
1P  are present in G then H-(u,v) together with 

1P  will  be the required spanning 

subgraph. If not, there exist at least one arc say (
1u ,

1v ) in 
1P  which is not in G. Since G is 

connected we can replace (
1u ,

1v )  by another 
1u -

1v  path in G. Let this path be 
2P . If 

2P  contain 

no m-strong arcs then H-(u,v) -  ( 1u , 1v ) together with 1P  and 2P  will be the required spanning 

subgraph. If 
2P  contain an m-strong arc then this arc will not be present in cG . Then replace this 

arc by a path connecting the corresponding vertices in cG  and proceed as above and since G 

contain only finite number of arcs finally we will get a spanning subgraph of that contain no m-

strong arcs. 

 

If more than one m-strong arc is present in H, then the above procedure can be repeated for all 

other m-strong arcs of H to get the required spanning subgraph of G. 

 

Corollory 3.2.3  

 Let ),( G   be a fuzzy graph. G and cG  are connected if and only if G contains at least one 

fuzzy spanning tree having no m- strong arcs. 

 

Proof  

Using  theorem 3.2.2 we will get a connected fuzzy spanning subgraph of G which contain no m 

-strong arcs. The maximum spanning fuzzy tree of this subgraph will be a spanning fuzzy tree of 

G that contain no m - strong arcs. 

 

3.3 COMPLEMENT OF FUZZY CYCLES 

Theorem 3.3.1 

 Let ),( G  be a fuzzy graph such that *G  is a cycle with more than 5 vertices. Then 
cG )( *
 

cannot be a cycle. 
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Proof 

 Given *G  is a cycle having n nodes where 6n . Then *G  will have exactly n arcs. Since all 

the nodes of G are also present in cG  number of nodes of cG  is n . Let the nodes of G and cG  

be  nvvv ,..., 21 . 

Then G
c
 must contain at least the following edges. 

( 1v , 3v ),( 1v , 4v ) … ( 1v , nv ) ; ( 2v ; 4v ),( 2v , 5v ) … ( 2v , nv ); ( 3v , 5v ), ( 3v , 6v ) … ( 3v , nv ) 

Since 6n  the total number of edges in cG  will be greater than n. Thus cG  will not be a cycle. 

 

Corollory 3.3.2 

Let G be fuzzy cycle with 6 or more nodes. Then cG  will not be fuzzy cycle. 

 

Proof 

Given G be fuzzy cycle with 6 or more nodes. All the nodes of G is also node of G
c
.  

Then G
c
 must contain at least the following edges. 

( 1v , 3v ),( 1v , 4v ) … ( 1v , nv ) ; ( 2v ; 4v ),( 2v , 5v ) … ( 2v , nv ); ( 3v , 5v ), ( 3v , 6v ) … ( 3v , nv ) 

Since 6n  the total number of edges in cG  will be greater than n. Thus cG  will not be a cycle. 

 

4. CONCLUSION 

The fuzzy graph represents the relationship between the objects of the given set. Fuzzy graphs 

have many more applications in modeling real time systems where the level of information 

inherent in the system varies with different levels of precision. In this paper Criterion for 

connectivity of a fuzzy graph is analyzed. The concept of connectivity and cycle connectivity 

play an important role in fuzzy graph theory. Cyclic vertex connectivity and cyclic edge 

connectivity of fuzzy graphs are also discussed. The complement of a fuzzy cycle is discussed.  
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